CV
Education
- B.Sc. in Mathematics and Applied Mathematics, Tsinghua University, 2022
- M.Sc. in Computer Science, University of California, Los Angeles, 2024
- Ph.D in Computer Science, University of California, Los Angeles, 2027 (expected), advised by Prof. Quanquan Gu
Research Experience
- 2022-2024: Graduate Student Researcher.
- UCLA Artificial General Intelligence Lab, Los Angeles, CA, USA
- Summer 2024: Research Intern
- Microsoft Research Asia – Vancouver lab, Redmond, WA, USA
Service
Conference Reviewers: AISTATS[2024-2025], ICLR[2024-2025], NEURIPS2024
Journal Reviewers: JAIR
Publications
* means Equal Contribution.
- Qiwei Di, Jiafan He, Dongruo Zhou, Quanquan Gu. Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic Shortest Path. ICML2023.
- Qiwei Di*, Tao Jin*, Yue Wu, Heyang Zhao, Farzad Farnoud, Quanquan Gu. Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits. ICLR2024
- Qiwei Di, Heyang Zhao, Jiafan He, Quanquan Gu. Pessimistic nonlinear least-squares value iteration for offline reinforcement learning. ICLR2024
- Yue Wu, Tao Jin*, Qiwei Di*, Hao Lou, Farzad Farnoud, Quanquan Gu. Borda Regret Minimization for Generalized Linear Dueling Bandits. ICML2024
- Qiwei Di, Jiafan He, Quanquan Gu. Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback. Preprint.
- Binshuai Wang, Qiwei Di, Ming Yin, Mengdi Wang, Quanquan Gu, Peng Wei. Relative-Translation Invariant Wasserstein Distance. Preprint.
- Runjia Li, Qiwei Di, Quanquan Gu. Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers . Preprint.